Quinine and Caffeine Effects on 45Ca Movements in Frog Sartorius Muscle

نویسندگان

  • Allen Isaacson
  • Alexander Sandow
چکیده

1 mM caffeine, which produces only twitch potentiation and not contracture in frog sartorius muscle, increases both the uptake and release of (45)Ca in this muscle by about 50 %, thus acting like higher, contracture-producing concentrations but less intensely. Quinine increases the rate of release of (45)Ca from frog sartorius but not from the Achilles tendon. The thresholds for the quinine effect on (45)Ca release and contracture tension are about 0.1 and 0.5 mM, respectively, at pH 7.1. Quinine (2 mM) also doubles the uptake of (45)Ca by normally polarized muscle. However, there are variable effects of quinine upon (45)Ca uptake in potassium-depolarized muscle. Quinine (2 mM), increases the Ca, Na, and water content of muscle while decreasing the K content. Both caffeine (1 mM) and quinine (2 mM) act to release (45)Ca from muscles that have been washed in Ringer's solution from which Ca was omitted and to which EDTA (5 mM) was added. These results, correlated with those of others, indicate that a basic effect of caffeine and quinine on muscle is to directly release activator Ca(2+) from the sarcoplasmic reticulum in proportion to the drug concentration. The drugs may also enhance the depolarization-induced Ca release caused by extra K(+) or an action potential. In respect to the myoplasmic Ca(2+) released by direct action of the drugs, a relatively high concentration is required to activate even only threshold contracture, but a much lower concentration, added to that released during excitation-contraction coupling, is associated with the condition causing considerable twitch potentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Caffeine Rigor and Radiocalcium Movements by Local Anesthetics in Frog Sartorius Muscle

Local anesthetics have been found to act as competitive inhibitors of caffeine in frog sartorius muscle. They block caffeine-induced rigor and the attendant increase in Ca(45) influx and efflux. Increased net uptake of sodium, loss of potassium, and concurrent increase in oxygen consumption are all effectively blocked by procaine. Evidence is presented that the inhibitory effect of the local an...

متن کامل

Enhanced Permeability to Sugar Associated with Muscle Contraction

When contractures were induced in isolated frog sartorius muscles with 4 mM caffeine, there was an increase in permeability of the muscle cells to 3-methylglucose. This observation suggests that the changes in permeability to sugar that are known to occur in electrically stimulated muscles may not be intimately related to the depolarization phase of the tissue response. Contractures that were e...

متن کامل

The Effect of Caffeine on Radiocalcium Movement in Frog Sartorius

Caffeine increases resting calcium influx approximately threefold in normally polarized and in potassium-depolarized fibers of frog sartorius muscles. It does not affect the transient rapid increase in calcium influx that occurs at the beginning of a potassium depolarization. Calcium outflux in Ringer's solution, in zero calcium Ringer's solution, and in zero calcium Ringer's solution plus 0.00...

متن کامل

Ca2+ dependence of stimulated 45Ca efflux in skinned muscle fibers

Stimulation of sarcoplasmic reticulum Ca release by Mg reduction of caffeine was studied in situ, to characterize further the Ca2+ dependence observed previously with stimulation by Cl ion. 45Ca efflux and isometric force were measured simultaneously at 19 degrees C in frog skeletal muscle fibers skinned by microdissection; EGTA was added to chelate myofilament space Ca either before or after t...

متن کامل

Effect of manganese ions on excitation-contraction coupling in frog sartorius muscle.

Manganese ions are known to inhibit the calcium spike in crayfish and barnacle. In frog sartorius muscle, we found that Mn++ inhibits the peak tension of twitch, tetanus, and potassium contracture and also the rate of rise and relaxation of tension. The inhibiting effect of Mn++ increased with increasing concentration (1-10 mM). The magnitude of resting potential and the amplitude of action pot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 50  شماره 

صفحات  -

تاریخ انتشار 1967